Indian Statistical Institute, Bangalore

M. Math. First Year

First Semester - Analysis of Several Variables

Back Paper Exam

Date : November 09, 2015

Each question carries 10 marks. Total marks: 50

- 1. Let E be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^m$ be a function with partial derivatives $D_j f_i$.
 - (a) If each $D_j f_i$ is bounded, prove that each f_i is continuous.
 - (b) If each $D_i f_i$ is continuous, prove that f is differentiable.
- 2. Let E be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^n$ be a C^1 -function.
 - (a) If $J_f(x) \neq 0$ for some $x \in E$, then f is 1-1 in a neighborhood of x.
 - (b) If $J_f(x) \neq 0$ for any $x \in E$, prove that f is an open map.
 - (c) Prove that $f(\{x \in E \mid J_f(x) \neq 0\})$ is open in \mathbb{R}^n .
- 3. (a) Find a point on the plane 2x + y 3z = 7 in \mathbb{R}^3 that is nearest to the origin. (b) Let E be an open set in \mathbb{R}^n and $T: E \to \mathbb{R}^n$ be 1-1 with nowhere vanishing J_T . If $f \in C_c(\mathbb{R}^n)$ with $S(f) \subset T(E)$, prove that $\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} f(Ty) |J_T(y)| dy$.
- 4. (a) Let $\alpha: [a, b] \to \mathbb{R}^2$ be a smooth closed curve and $P: \alpha([a, b]) \to \mathbb{R}$ be a continuous function. Prove that $|\int P dx| \leq \frac{1}{2}(\operatorname{Max} f \operatorname{Min} f)\Lambda(\alpha)$.

(b) Evaluate $\int_C (2y + \sqrt{1 + x^5}) dx + (5x - e^{y^2}) dy$ where C is given by $x^2 + y^2 = 4$.

- 5. (a) Let C be the triangle with vertices (0,0), (1,0) and (1,3) with clock-wise orientation. Find $\int_C \sqrt{1+x^5}dx + 2xydy$.
 - (b) Prove Green's theorem for rectangles.